Representación matricial y coordenadas homogéneas

Coordenadas homogéneas


El uso de coordenadas homogéneas permite tratar todas las transformaciones geométricas como una multiplicación de matrices.
Las coordenadas agregan un tercer componente a las coordenadas bidimensionales.
 De tal forma que, un punto (x,y) pasa a ser (x,y,W). El valor de W es generalmente 1.
Coordenadas homogéneas y representación matricial
El uso de coordenadas homogéneas permite tratar todas
las transformaciones geométricas como una multiplicación de matrices.
Las coordenadas agregan un tercer componente a las coordenadas bidimensionales. De tal forma que, un
punto (x,y) pasa a ser (x, y, W). El valor de W es generalmente 1.





Representación matricial.


En el área de la graficación por computadora, es común encontrar la representación de las ecuaciones de transformación por medio de matrices, y se pueden encontrar dos tipos de notaciones para representarlas:
1.- Repesentando las coordenadas de un punto p como vectores renglón (en este caso una matriz de transformación M en 2 dimensiones, multiplica al punto por la derecha para obtener el nuevo punto p'.
p= [x1    x2],   p'=[x1    x2]= p*M

2.- Representando las coordenadas de un punto p como vectores columna, en este caso una matriz de transformación M, multiplica al punto por la izquierda para obtener el nuevo punto p'.